Geometry 11.1 Dilations

A DILATION is:

Coordinate Notation for a Dilation

You can describe a dilation with respect to the origin with the notation $(x,y) \to (kX,ky)$, where k is the scale factor. If 0 < k < 1, the dilation is a reduction. If k > 1, the dilation is an enlargement

Remember that the scale factor for a dilation is always from Image to **preimage**. So the primes go on top and the originals go on bottom.

the scale factor from triangle ABC to triangle A'B'C'.

EXAMPLE 1 Identify dilations Find the scale factor of the dilation. Then tell whether the dilation is a $\it reduction$ or an $\it enlargement$.

A triangle has the vertices A(4, -4), B(8, 2), and C(8, -4). The image of $\triangle ABC$ after a dilation with a scale factor of $\frac{1}{2}$ is $\triangle DEF$.

Find the coordinates of L, M, and N so that \triangle LMN is a dilation of \triangle PQR with a scale factor of k.

1. P(-2, -1), Q(-1, 0), R(0, -1); k = 4

You want to create a quadrilateral EFGH that is similar to quadrilateral PQRS. What are the coordinates of H? (A) (12, -15)(B) (7, 8)(C) (12, 15)(D) (15, 18)(D) (15, 18)(E) (12, 15)(D) (15, 18)(E) (12, 15)(E) (12, 15)

EXAMPLE 5 Find the image of a composition

The vertices of $\triangle ABC$ are A(-4,1), B(-2,2), and C(-2,1). Find the image of $\triangle ABC$ after the given composition.

Translation: $(x, y) \rightarrow (x + 5, y + 1)$ Dilation: centered at the origin with a scale factor of 2 $C'(3,2) \rightarrow C(6,4)$ $B'(3,3) \rightarrow B''(6,6)$ $A'(1,2) \rightarrow A''(2,4)$ Final Answer

Try this:

A segment has the endpoints C(-1,1) and D(1,1). Find the image of \overline{CD} after a 90° rotation about the origin followed by a dilation with its center at the origin and a scale factor of 2.

What are 3 types of transformations that preserve congruency?

Rotations Reflections Translations Homework

pg 494; 4, 5, 8, 11, 12, 13, 16, 17